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1  | INTRODUC TION

The study of colour in nature continues to generate fundamen-
tal knowledge: from the neurobiology and ecology of information 
processing (Caves et al., 2018; Schnaitmann et al., 2018; Thoen, 
How, Chiou, & Marshall, 2014; White & Kemp, 2017), to the evo-
lutionary drivers of life's diversity (Dalrymple et al., 2015, 2018; 
Endler, 1980; Maia, Rubenstein, & Shawkey, 2013b). Colour is a 
subjective perceptual experience, however, so our understanding 

of the function and evolution of this conspicuous facet of varia-
tion depends on our ability to analyse phenotypes in meaningful 
ways. Excellent progress continues to be made in this area, with 
emerging techniques now able to quantify and integrate both the 
spectral (i.e. colour and luminance) and spatial (i.e. the distribution 
of pattern elements) properties of colour patterns (Endler, 2012; 
Endler, Cole, & Kranz, 2018; Kemp et al., 2015; Renoult, Kelber, 
& Schaefer, 2017; Troscianko, Skelhorn, & Stevens, 2017, van den 
Berg et al., in prep). The need remains, however, for tools that 
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Abstract
1.	 Biological coloration presents a canvas for the study of ecological and evolution-

ary processes. Enduring interest in colour-based phenotypes has driven, and been 
driven by, improved techniques for quantifying colour patterns in ever-more rele-
vant ways, yet the need for flexible, open frameworks for data processing and 
analysis persists.

2.	 Here we introduce pavo 2, the latest iteration of the r package pavo. This release 
represents the extensive refinement and expansion of existing methods, as well as 
a suite of new tools for the cohesive analysis of the spectral and (now) spatial 
structure of colour patterns and perception. At its core, the package retains a 
broad focus on (a) the organization and processing of spectral and spatial data, and 
tools for the alternating (b) visualization, and (c) analysis of data. Significantly, pavo 
2 introduces image-analysis capabilities, providing a cohesive workflow for the 
comprehensive analysis of colour patterns.

3.	 We demonstrate the utility of pavo with a brief example centred on mimicry in 
Heliconius butterflies. Drawing on visual modelling, adjacency, and boundary 
strength analyses, we show that the combined spectral (colour and luminance) and 
spatial (pattern element distribution and boundary salience) features of putative 
models and mimics are closely aligned.

4.	 pavo 2 offers a flexible and reproducible environment for the analysis of colour, 
with renewed potential to assist researchers in answering fundamental questions 
in sensory ecology and evolution.
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integrate these complex methods into clear, open, and reproduc-
ible workflows (White et al., 2015), allowing researchers to retain 
focus on the exploration of interesting questions.

Here we introduce pavo 2, a major revision and update of the r 
package pavo (Maia, Eliason, Bitton, Doucet, & Shawkey, 2013a). 
Since its initial release, the package has provided a cohesive 
framework for the processing and analysis of spectral data, yet 
the interceding years have seen the advent of novel analytical 
methods and the refinement of existing ones. As detailed below, 
pavo 2 has been extensively expanded to incorporate a suite of 
new tools, with the most significant advance being the inclusion 
of geometry-based analyses. This allows for the quantification 
of spectral and spatial properties of colour patterns within a 
single workflow, thereby minimizing the computational and 

cognitive overhead associated with their otherwise fragmented 
analysis.

2  | THE PAVO  PACK AGE , VERSION 2

The conceptual focus of pavo remains centred on three components: 
(a) data importing and processing, and ongoing feedback between (b) 
visualization and (c) analysis (Figure 1). The package is available for 
direct installation through r from cran (https://CRAN.R-project.org/
package=pavo), while the development version is available on Github 
(https://github.com/rmaia/pavo). Comprehensive details and exam-
ples of the rich functionality of pavo are available in help files as well 
as the package vignettes. Indeed, we strongly encourage readers to 

F IGURE  1 A general overview of the colour-pattern analysis workflow in pavo as of version 2, displaying some key functions at each stage

https://CRAN.R-project.org/package=pavo
https://CRAN.R-project.org/package=pavo
https://github.com/rmaia/pavo
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refer to the vignettes as the primary source for information on pavo's 
functionality (accessible through browseVignettes(pavo), and at 
http://rafaelmaia.net/pavo/), since they are updated as necessary 
with every package release.

3  | ORGANIZ ATION

Images and spectra can be loaded into pavo in bulk through the use 
of getimg() and getspec(), respectively. Both are capable of 
handling multiple data formats, such as jpeg, bmp, and png in the 
case of images, and over a dozen formats of spectral data, including 
the diverse and complex proprietary formats of the various spec-
trometer vendors. Once loaded, the data are stored as objects of an 
appropriate custom S3 class for use in further functions. Spectral 
data are of class rspec, and inherit methods from data.frame, 
while images are of class rimg, and are multidimensional objects 
(typically 3D, for an RGB image) that inherit methods from array. If 
more than one image is imported in a single call to getimg(), then 
each image is stored as an element of a list. This class system allows 
for — among other things — the reliable use of generic functions 
such as plot() and summary(), which can be called any time to 
inspect and visualize data.

Several functions then facilitate the initial processing of colour 
data. It is often desirable to process spectra to remove unwanted 
noise, modify the spectral range, and/or interpolate the standard 
wavelength intervals, all of which may be achieved through proc-
spec(). For images, procimg() offers similar functionality such as 
the ability to interactively specify the real-world scale of images (in 
preferred units of measurement), rotate and resize images, or define 
the boundary between a focal object and the visual background. The 
scope of image processing in pavo 2 is minimalist by design, as much of 
what might be used during standard image handling are either needs 
best considered and met by researchers during image capture and 
data-checking, or are readily achieved within r using existing packages 
such as imager (Barthelme, 2018) and magick (Ooms, 2018). Indeed, pavo 
2 includes convenience functions to convert between image-classes 
used by pavo, imager and magick, allowing ready access to extensive 
image-processing capabilities.

4  | VISUALIZ ATION

The repeated visualization of spectral and spatial data is an es-
sential step during all stages of analysis, and pavo 2 offers numer-
ous tools and publication-ready graphics fit for purpose. Once the 
package is loaded, the plot() function recognizes objects of class 
rspec and rimg, as well as colspace (the product of visual mod-
elling, detailed below), and becomes the conduit to most visuali-
zations. For raw spectral data, for example, plot() will produce 
a clean plot of the spectra vs. wavelengths (Figure 1, centre-left). 
Following visual modelling, di-, tri- and tetra-chromatic models can 
instead be visualized, as well as data from more specialized models, 

such as the colour hexagon (Chittka, 1992), CIEXYZ or LAB spaces 
(Smith & Guild, 1931; Westland, Ripamonti, & Cheung, 2012), cat-
egorical space (Troje, 1993), segment analysis (Endler, 1990), the 
colour-opponent coding space (Backhaus, 1991), or the ‘receptor-
noise’ space (de Ibarra, Giurfa, & Vorobyev, 2001; Pike, 2012). 
Images can also be plotted, with the result depending on whether 
and how they have been processed. When given an unprocessed 
rimg object, plot() will produce a simple raster-based plot of the 
image (Figure 1, right). Following the results of classify() (dis-
cussed below), in which images are segmented into discrete colour-
classes (or if a colour-classified image is loaded directly), the plot 
will use the mean RGB values of each colour-class to plot the now-
classified image (Figure 2).

5  | ANALYSIS

Since the perception of colour is a subjective experience, signifi-
cant progress has been made in representing its reception using 
ecologically relevant ‘visual models’ (Kelber, Vorobyev, & Osorio, 
2003; Kemp et al., 2015; Renoult et al., 2017), which pavo 2 includes 
in an extended repertoire. The first step in such analyses is a call 
to vismodel(), which models photoreceptor stimulation (quantum-
catches, or photon-flux) based on information about the viewer's 
visual sensitivity and viewing environments. While users are free 
to use their own spectra, pavo includes a suite of built-in receptor 
sensitivities, illuminant and transmission data (be it environmental or 
ocular), and viewing backgrounds, for convenience.

Once quantum catches are estimated the results can used in a 
number of models, depending on the question and analytical ob-
jective at hand (Kemp et al., 2015; Renoult et al., 2017). General 
colourspaces are available through a call to colspace() which, if 
provided no further arguments, will model the data in a generalist 
di- tri- or tetrachromatic space informed by the dimensionality of 
the visual system. More specialized colourspaces — which may be 
informed by specific information about the visual systems of par-
ticular species — are also available via colspace(). The CIEXYZ, 
CIELAB and CIELch models (designed and intended exclusively for 
humans) are available, and colspace() will check that the appro-
priate inputs, such as the human colour-matching function, have 
been used to model receptor stimulation, as required (Smith & 
Guild, 1931; Westland et al., 2012). The colour-opponent-coding 
(Backhaus, 1991) and colour-hexagon (Chittka, 1992) models of 
bee vision are implemented, as is the 'categorical' model of fly 
colour-vision detailed by Troje (1993). Plots for every space are 
accessible through a call to plot() which, thanks to the underly-
ing class system, will draw on the appropriate visualization for the 
model at hand — be it a hexagon, a dichromatic segment, a Maxwell 
triangle or a three-dimensional tetrahedron.

The receptor-noise limited (RN) model of early-stage (retinal) 
colour processing has proven exceptionally popular (Vorobyev, 
Brandt, Peitsch, Laughlin, & Menzel, 2001; Vorobyev & Osorio, 
1998), and has been tested to varying degrees in diverse taxa 

http://rafaelmaia.net/pavo/
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(Barry, White, Rathnayake, Fabricant, & Herberstein, 2015; 
Fleishman et al., 2016; Kelber et al., 2003; Olsson, Lind, & Kelber, 
2015; White & Kemp, 2016). Following the estimation of receptor 
stimulation in vismodel(), the model incorporates information on 
relative receptor densities and noise through the function cold-
ist(), and estimates either quantum- or neural-noise weighted 
colour distances. Version 2 of pavo introduces several extensions of 
this approach, such as the bootstrapped colour distance of boot-
coldist(), which provides an estimate of the noise-weighted dis-
tances (dS's and/or dL's) between the centroids of colour samples 
in multivariate space, with an appropriate measure of error (de-
tailed in Maia & White, 2018). Stimuli can also now be expressed 
and plotted as coordinates in ‘perceptual’ (i.e. receptor-noise 
corrected) space by calling jnd2xyz() on the distances calcu-
lated in coldist() (de Ibarra et al., 2001; Pike, 2012). Notably, 
these functions now accept n-dimensional data (derived inde-
pendently, but see Clark, Santer, & Brebner, 2017; Gawryszewski, 
2018, for valuable discussion). This allows for the modelling of ex-
treme (Chen, Awata, Matsushita, Yang, & Arikawa, 2016; Cronin 
& Marshall, 1989, though given the lack of support for traditional 
opponency in these systems, the RN model may be of limited use 
here) or entirely hypothetical visual systems. Of course cold-
ist() also accepts the results of alternative models — such as the 
hexagon or CIELAB — and will return colour distances in units ap-
propriate for each space.

Exciting recent advances now allow for the analysis of 
colour pattern geometry — that is, the spatial structure of 
colour patches — in conjunction with the comparatively well-
developed approaches to the spectral analysis of colour outlined 

above (Endler, 2012; Endler et al., 2018; Pike, 2018; Troscianko 
et al., 2017). The most significant extension of pavo as of ver-
sion 2 is the introduction of an image-based workflow to allow 
for the combined analysis of the spectral and spatial structure 
of colour patterns, currently centred on measures of overall 
pattern contrast (Endler & Mielke, 2005), the adjacency anal-
ysis (Endler, 2012), and its extension, the boundary strength 
analysis (Endler et al., 2018). In pavo 2, the various steps for 
such analyses are carried out through calls to classify(), 
which automatically or interactively segments images into dis-
crete colour-classes, and/or adjacent(), which performs the 
adjacency analysis and, if appropriate colour distances are also 
specified, the boundary strength analysis (discussed in Endler 
et al., 2018).

Briefly, these analyses entail classifying evenly spaced points 
within a visual scene into discrete colour classes using spec-
trometric measurements and/or photography. The column-wise 
and row-wise colour-class transitions between adjacent points 
are then tallied, and from this a suite of summary statistics on 
pattern structure — from simple colour proportions, through to 
colour diversity and pattern complexity — are estimated (e.g. 
Endler, Gaburro, & Kelley, 2014; Rojas, Devillechabrolle, & 
Endler, 2014; Rojas & Endler, 2013; White, 2017). The precise 
procedure that might be followed by researchers will vary con-
siderably depending on the goal and tools at hand, and pavo 2 is 
designed to accommodate such flexibility. In relatively simple 
cases (as in the below example), users may import and calibrate 
images via getimg() and procimg(), segment the image via 
clustering using classify(), and combine it with spectrometric 

F IGURE  2 A sample workflow for image handling and analysis in pavo, as of version 2. Images are first imported and optionally processed 
by, for example, setting scales (yellow line) or defining objects and backgrounds (red outline). They may then be colour-classified before 
being passed to analytical functions, currently centred on the adjacency and boundary-strength analyses. If backgrounds and focal objects 
are defined then they can be analysed separately, concurrently, or either one can be excluded entirely
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measurements and visual modelling of the few discrete colour-
classes in a call to adjacent(). In more complex cases, such 
as animals in their natural habitats, users may instead wish to 
collect spectrometric measurements along a grid-sample of 
the visual scene, visually model and statistically cluster the re-
sults (e.g. using vismodel()), then feed the resulting colour-
classified grid into adjacent() directly (as per ‘method 1’: 
Endler, 2012), without the use of images or the classify() 
function at all (see the package vignette for an example).

As alluded to earlier, our goal is to provide a flexible and rel-
atively simple analytical framework for the analysis of a colour 
pattern's spatial structure using images, with few requirements 
for specialized photographic equipment or and/or extensive cal-
ibration and processing (demonstrated in the colour-plate based 

example below). We thus make an analytical and conceptual dis-
tinction between the spectral data afforded by spectrometry (i.e. 
the number and ‘colour’ of patches), and the spatial data afforded 
by images (i.e. the size, distribution and arrangement of patches), 
with the two able to be conveniently combined during latter 
analyses (Figure 1). This also minimizes the unnecessary dupli-
cation of efforts of more general-purpose tools such as imager 
(Barthelme, 2018) and magick (Ooms, 2018), and the excellent 
image analysis toolbox ‘mica’ for imageJ (Troscianko & Stevens, 
2015), which offer rich functionality for image processing and (in 
the latter case) analysis. We emphasize, however, that the con-
venience of the toolkit provided by pavo 2 belies the complexity 
of the choices demanded of researchers and that every parame-
ter and option requires close consideration and justification. It 

F IGURE  3 A modification of Eltringham's (1916) colour plate of Heliconius butterflies, sensu Endler (2012), arranged into putative models 
and mimics. The left side of each individual is as per the original, while the right half display pattern elements that have been classified into 
discrete classes via k-means clustering, using the classify() function
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is rare, for example, that image analyses should be used with-
out any input from visually-modelled spectrometric data, since 
naive clustering performed on uncalibrated images will offer a 
poor representation of a visual scene as relevant to non-human 
animals. For example, even in simple cases, as below, the number 
of discrete patches present (e.g. the argument kcols in clus-
ter()) and their approximate distribution is best estimated using 
spectrometric data in an ecologically relevant model, rather than 
relying on human-subjective estimates of colour segregation, or 
the automated clustering of RGB/HSV/Lab image data. Note that 
this is true across software packages for biological image analysis 
more generally, which should be used with caution if attempting 
to estimate ecologically salient measures of colour and/or pat-
tern similarity only using uncalibrated, compressed images clus-
tered using human-based colourspaces. One flexible approach 
combining spectrometry and image analysis is integrated into the 
below example, and Endler (2012) details others, such as estimat-
ing extant colours within a scene as the number of receptor-noise 
ellipsoids required to encompass an entire sample of spectra.

6  | WORKED E X AMPLE: MIMICRY IN 
H ELICON IUS  SPP.

Butterflies of the genus Heliconius are widely involved in mimicry 
and have proven an exemplary system for studies of colour pattern 

development, ecology and evolution (Jiggins, 2016). Here we dem-
onstrate some of pavo 2's capabilities by briefly examining the visual 
basis of mimicry in this system, with the objective of quantifying 
the spectral and spatial (dis)similarity between putative models and 
mimics. For our spatial analyses, we follow Endler (2012) and use 
colour plate XII from Eltringham (1916), which is arranged into what 
he described as model and mimic pairs (Figure 3). For our spec-
tral analyses we collated six reflectance spectra from each of the 
assumed-discrete ‘red’, ‘yellow’ and ‘black’ patches (confirmed by 
spectral measurement, below) of the forewings of two species — H. 
egeria and H. melpomene (Figure 3, top left pair) — from personal 
sources and the literature (Bybee et al., 2011; Wilts, Vey, Briscoe, 
& Stavenga, 2017). For reasons of simplicity and data availability 
we restrict our visual modelling to these two species, though the 
below spectral analyses would ideally be repeated for all model/
mimic pairs.

6.1 | Spectral analysis

We first focus on the spectral data, both to confirm the assumption 
that there are discrete colour patches and because some of the re-
sults of this work will be drawn on for the latter pattern analyses. 
We begin by loading the reflectance spectra, which are saved in a 
single tab-delimited text file along with the image plates (available 
at the package repository; https://github.com/rmaia/pavo, or via 
figshare; https://doi.org/10.6084/m9.figshare.7445840), before 

F IGURE  4 Reflectance spectra 
from black, red, and yellow patches 
of Heliconius egeria and Heliconius 
melpomene, along with their positions in 
a tetrahedral model of avian vision (left 
side). The bootstrapped, noise-corrected 
chromatic and achromatic patch distances 
between species (right) predicts that the 
individual colours of this model/mimic 
pair are likely indistinguishable to avian 
predators

https://github.com/rmaia/pavo
https://doi.org/10.6084/m9.figshare.7445840
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LOESS-smoothing them to remove any minor electrical noise and 
zeroing spurious negative values.

# Load spectra

> heli_specs <- getspec("../data", ext = "txt")

# Smooth spectra and zero negative values

>     heli_specs <- procspec(heli_specs,

> opt = "smooth",

>                                            fixneg = "zero")

A call to plot(heli _ specs, col = spec2rgb(heli _

specs)) displays the now-clean spectra, with each line coloured ac-
cording to how it might appear to a human viewer (Figure 4, top left).

Our interest is in quantifying the fidelity of visual mimicry, so 
we must consider the perspective of ecologically relevant view-
ers (the primary selective agents) which, in the case of aposematic 
Heliconius, are avian predators (Benson, 1972; Chai, 1986). We thus 
use the receptor-noise limited model (Vorobyev & Osorio, 1998; 

F IGURE  5 Select results of the colour pattern analysis of model and mimic Heliconius (Figure 3), using adjacency and boundary strength 
analyses. Strong correlations are evident in colour proportions (top row), measures of colour diversity and complexity (centre row), and 
estimates of mean chromatic and achromatic edge salience (bottom row)
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Vorobyev et al., 2001) to predict whether the black, red and yel-
low colour patches of a representative model and mimic are dis-
tinguishable to avian predators. This first entails estimating the 
photoreceptor quantum catches of a representative viewer, so we 
use a built-in average UV-sensitive avian visual phenotype for esti-
mating chromatic distances, and the double-cone sensitivity of the 
blue tit for luminance distances.

>      heli_model <- vismodel(heli_specs,

> visual = "avg.uv",

> achromatic = "bt.dc",

> relative = FALSE)

At this point we may wish to get a quick sense of the relative distri-
bution of stimuli by converting them to locations in an avian tetrahedral 
colourspace and plotting the results with plot(colspace(heli_
model)) (Figure 4). With receptor stimulation estimated, we now cal-
culate noise-corrected chromatic and achromatic distances between 
patches. The coldist() function can be used to return the pairwise 
distances between every spectrum, which might then be averaged to 
derive a mean distance between species for every patch. This neglects 
the multivariate structure of such data, however, when the objective 
is to estimate the separation of groups in colourspace (Maia & White, 
2018). We therefore prefer a bootstrapped measure of colour distance 
using bootcoldist(), which provides a robust measure of the sep-
aration of our focal samples (i.e. the red, white, and black patches of 
model vs. mimic), along with a 95% confidence interval, which can be 
inspected to see if it exceeds the theoretical discrimination threshold 
of one JND. We specify a relative receptor density of 1:2:2:4 (ultra-
violet:short:medium:long wave-length receptors; Maier & Bowmaker, 
1993), a signal-to-noise ratio yielding a Weber fraction of 0.1 for both 
chromatic and achromatic receptors, and assume that noise is pro-
portional to the Weber fraction and independent of the magnitude 
of receptor stimulation (reviewed in Kelber et al. 2003; Olsson, Lind, 
& Kelber, 2017).

# Calculate the bootstrapped, noise-corrected colour distance
# between groups, using sample names to specify grouping ID's.

>          heli_dist <- bootcoldist(heli_model,

> by = sub("\\..*", "", rownames (heli_model)),

> n = c(1, 2, 2, 4),

> weber = 0.1,

> weber.achro = 0.1)

Inspection of the key comparisons of interest (Figure 4, right) reveals 
that the 95% CI of all chromatic and achromatic comparisons includes 
the theoretical threshold of one JND. This predicts that the individual 
colour pattern elements of putative model and mimic H. egeria and H. 
melpomene are indistinguishable, or difficult to discriminate, to avian 
viewers — the assumed intended recipient of the aposematic signals. 
As noted above, the analysis of this representative pair can be readily 
scaled to encompass all species given the necessary data, and we can 
now use this information to inform our study of the spatial structure of 
these signals.

6.2 | Pattern analysis

We first load the focal images, which comprise the individual 
samples from plate XII of Eltringham (1916), saved as jpegs 
(Figure 3). We then plot one or all of the images to check they are 
as expected.

# Load all images. Here the 28 jpegs are stored in a folder called

# 'butterflies' located within the current working directory.

> heli_images <- getimg("butterflies") 

28 files found; importing images.

# Plot the first image in the list only.

> plot(heli_images[[1]])

# Plot all images, which will progress through

# the sequence automatically.

> plot(heli_images)

We then segment the image and classify the pixels of all images 
into discrete colour or luminance categories, in this instance using 
k-means clustering, to create a colour-classified image matrix. The 
function classify() will carry this out, though there are numer-
ous specific ways in which it may be achieved, including automat-
ically or ‘interactively’, with the option of a reference image as 
template. Since our images are heterogeneous, it is simplest to use 
the interactive version of classify(), which will cycle through 
each image and ask the user to manually identify a homologous 
sample from every discrete colour or luminance class present, 
which are then used as cluster centres.

# Interactively colour-classify all images using k-means clustering.

> heli_class <- classify(heli_images, interactive = TRUE)

# Cycle through plots of the colour-classified images, alongside their

# identified colour palettes.

> summary(heli_class, plot = TRUE)

Finally, we use an adjacency analysis to estimate a suite of met-
rics describing the structure and complexity of the colour pattern 
geometry of model and mimic Heliconius, and by including the vi-
sually modelled colour distances estimated above the output will 
include several measures of the salience of colour patch edges 
as part of the boundary strength analysis (Endler, 2012; Endler 
et al., 2018). We will exclude the white background since it is not 
relevant, simply by specifying the colour-category ID belonging 
to the homogeneous underlay. If the image was more complex, 
such as an animal in its natural habitat, we might instead interac-
tively identify and separate the focal animal and background using 
procimg() (e.g. Figure 2, second panel). Alternatively, we might 
forego the use of images altogether, and instead grid-sample and 
cluster the spectra across the visual scene and use these in di-
rectly in the call to adjacent() (sensu ‘method 1’ in Endler, 2012, 
see package vignette).
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# Construct and inspect a data.frame of pairwise colour and luminance

# distances between all colour classes, built from the earlier

# receptor-noise modelled estimates. Note that we do not bother

# including colour-class ID 1, since that is the white background

# which is to be excluded from the analysis (see below).

# (Alternatively we could include it, and it would simply be ignored).

> distances <- data.frame(c1 = c(2, 2, 3), 

>                                         c2 = c(3, 4, 4),

>                                         dS = c(10.6, 5.1, 4.4),         

>                                         dL = c(1.1, 2.5, 3.2))

> distances

c1  c2 dS dL

2 3 10.50 7.41

2 4 11.76 23.40

3 4 13.29 15.99

# Calculate adjacency and boundary-strength statistics. We specify a

# scale of 50 mm, and note that the 'white' background, which has the class

# ID of 1 in this case, is to be excluded from the analysis.

# We also include the colour distance between all patches, as estimated above.

>       heli_adj <- adjacent(heli_class,

> xscale = 50,

> bkgID = 1,

>                                        exclude = "background",

>                                        coldists = distances)

# Inspect a subset of the resulting data.frame. Variable meanings

# are detailed in the function documentation (see ?adjacent),

# or Endler (2012), Endler et al. (2018), and Endler & Mielke (2005).

> head(heli_adj)[, 1:7]

k N n_off p_2 p_3 p_4 q_2_2  ...

mimic_01 3 345522 6547 0.801 0.130 0.067 0.796

mimic_02 2 1018370 4091 0.835 0.164 NA 0.834

mimic_03 3 265278 6155 0.685 0.198 0.116 0.677

...

We can now inspect the pattern descriptors of particular interest 
and explore the similarity of models and mimics with respect to their 
broader colour pattern geometry. As seen in Figure 5, the relative pro-
portions of focal colours (top row), measures of pattern diversity and 
complexity (centre row), and the salience of patch boundaries (bottom 
row) are highly correlated between species pairs. This, in conjunction 
with the above modelling, suggests that the overall colour patterns of 
putative model and mimic Heliconius — both spectrally and spatially 
— are highly similar, and are thus predicted to be very difficult to dis-
criminate to the intended avian viewers of their aposematic signals, 
as consistent with theory (Müller, 1879). More interesting questions 
remain, of course, including the degree to which mimics need resem-
ble models to deceive viewers, and the relative importance of differ-
ent colour pattern elements (e.g. Figure 5) in mediating the subjective 
resemblance of species pairs, for which pavo 2 is well-suited to help 
answer.

7  | CONCLUSIONS

The integrative study of biological coloration has borne rich fruit, though 
its potential to illuminate the structure and function of much of the natural 
world is not nearly realized (Endler & Mappes, 2017). As we have sought to 
demonstrate, pavo 2 (and beyond) provides a flexible framework to assist 
researchers studying the physiology, ecology and evolution of colour pat-
terns and visual perception. We appreciate bug reports and suggestions, 
via email or the Github issue tracker https://github.com/rmaia/pavo/issues.

8  | CITATION OF METHODS

Many of the methods applied in pavo 2 are described in detail in their 
original publications — as listed in the documentation for the rele-
vant functions — to which users should refer and cite as appropriate, 
along with pavo itself, via this publication.
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