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Much of what we know about human colour perception has come from

psychophysical studies conducted in tightly-controlled laboratory settings.

An enduring challenge, however, lies in extrapolating this knowledge to

the noisy conditions that characterize our actual visual experience. Here

we combine statistical models of visual perception with empirical data to

explore how chromatic (hue/saturation) and achromatic (luminant) infor-

mation underpins the detection and classification of stimuli in a complex

forest environment. The data best support a simple linear model of stimulus

detection as an additive function of both luminance and saturation contrast.

The strength of each predictor is modest yet consistent across gross variation

in viewing conditions, which accords with expectation based upon general

primate psychophysics. Our findings implicate simple visual cues in the gui-

dance of perception amidst natural noise, and highlight the potential for

informing human vision via a fusion between psychophysical modelling

and real-world behaviour.
1. Introduction
The interactions of light and matter offer a rich source of information about the

world, and vision often dominates the sensory ecology of animals. Regardless

of ocular structure, visual processing begins with the absorption of photons

by one or more receptors sensitive to a limited range of wavelengths [1,2]. In

humans, the perception of luminance is mediated by the pooled stimulation

of mid- and long-wavelength cones, which is broadly used to judge form,

motion and texture [3]. This enables rapid characterization of entire panoramas

because the greatest spectral power—hence ‘information’—generally exists in

the achromatic channel [2,4]. Unlike achromatic cues, however, the chromatic

features of stimuli (i.e. hue and saturation) are relatively invariant, and so

tend to be used for higher tasks such as object recognition, categorization

and memory [3,5]. Humans, as old world primates, possess a trichromatic

visual system that enables colour perception via two independent ‘opponency’

channels [6]. One channel arises via comparison of relative stimulation among

mid-versus-long-wave sensitive cones, and the second arises through compar-

ing the stimulation of mid- and long-wave receptors with that of short-wave

receptors [7].

This initial extraction of colour and luminance information is critical for

higher-level cognitive functions and ultimately defines our ability to judge

spatial perspective, detect movement, classify scenes, and locate objects

within them. Present knowledge of how such information is weighted among

these tasks stems from exacting laboratory-based psychophysical study
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Figure 1. The spectral reflectance (n ¼ 5 samples) of (a) model stimuli components and (b) background material, along with their position in the (c) luminance
and (d ) colour-opponent dimensions of the CIELAB model of human colour sensation. The colours of each point/line (yellow, blue, black and brown) approximate
the colour of the elements comprising each model ‘morph’ as seen by a human observer. (Online version in colour.)
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[3,6,7], which has generated precise models of colour percep-

tion [8]. The world at large, however, is visually dynamic.

Information must be continuously integrated, and the most

salient cues may shift with the broader viewing context

[9,10]. An outstanding challenge therefore lies in extrapolat-

ing laboratory-gained knowledge to colour sensation under

the noisy environments that characterize our historical (evol-

utionary) and contemporary visual experience. Integrative,

‘top-down’ approaches that combine physiological knowl-

edge with natural-behavioural data hold particular promise

[11], though remain largely untested in the context of

human visual ecology.

In this study we used empirical data of human perform-

ance in an object detection task to explore which spectral

cues best guide detection and classification amidst gross

visual noise. We used an information-theoretic approach to

define the linear combination of parameters that (additively

and/or interactively) best explained subject performance

in a forest environment under varied visual conditions.

In doing so, we explicitly tested the prediction derived from

primate psychophysics that detection should rely upon both

luminance and chromatic contrasts [3,6,7].
2. Methods
(a) Data provenance
We used data from an experiment in which human viewers were

tasked with finding objects under two forest-light environments
[12]. The focal stimuli consisted of paraffin wax models of four

different morphs of the dyeing poison frog Dendrobates tinctorius
(fig. 1e–h in [12]), whose patterns differed in the arrangement

and constitution of ‘yellow’, ‘blue’ and ‘black’ patches (see [12]

for model-construction details). Reflectance spectra (figure 1a)

were captured from representative patches using an OceanOptics

USB4000-FL spectrometer and a PX-2 pulsed xenon light source,

calibrated against a Spectralon (Labsphere, Congleton, UK) white

standard. Measurements of a haphazard sample of leaf-litter

background material—upon which models were presented—

were collected at the same locality.

During the human-detection assay, 20 model stimuli (five of

each morph) were placed randomly in two 6 � 6 m quadrats that

differed in their light environment; one was located under a large

canopy gap, and the other under a wholly closed-canopy. All

trials were conducted on a single overcast day between 07.00

and 11.00, in an effort to minimize within-treatment environ-

mental variation between trials. Twenty-five volunteers (12

women, 13 men) were asked to find as many models as possible

in each quadrat within 30 s. Twelve of the participants started in

the canopy gap environment, while the other 13 started in the

closed forest environment. Upon completing their search in

the first environment, each participant repeated the task in the

second environment. Participants had no experience with the

focal stimuli prior to their first trial, and individual trials were

independent from one another.
(b) Visual modelling
We used the CIELAB model of human perception to estimate

the subjective chromatic and achromatic visual information
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Table 1. Full model-selection table, detailing the relative strength of candidate models for the relationship between target detection and one or more linear
combinations of: luminance contrast (DL), saturation contrast (DS), hue contrast (Dh), maximum colour difference (DC max.), integrated colour difference (DC
int.), and the gross between-environment deviation for each (dev.). Estimates of the log-likelihood (LL), adjusted Akaike’s information criterion (AICc), change in
AICc relative to the leading model (DAICc), and relative weights (w) are provided for each model. Bolded estimates denote the most informative models, as
broadly indicated by a relative increase in AICc of less than 2.

model d.f. LL AICc DAICc w

DL 1 DS 5 2264.18 538.70 0.00 0.505

DL 4 2265.91 540.10 1.35 0.258

DL * DS 6 2264.32 541.10 2.43 0.150

DS 4 2267.95 544.10 5.43 0.033

DS þ S dev. 5 2267.40 545.10 6.44 0.020

DL þ DS þ L dev. þ S dev. 7 2265.46 545.60 6.87 0.016

DL þ L dev. 5 2268.46 547.30 8.57 0.007

DC int. 4 2270.23 548.70 9.99 0.003

DL þ Dh 5 2269.26 548.90 10.17 0.003

null (intercept only) 3 2271.62 549.40 10.67 0.002

Dh 4 2271.88 552.00 13.29 0.001

DS þ Dh 5 2271.02 552.40 13.69 0.001

DC max. 4 2273.74 555.70 17.01 0.000

DC int. þ C dev. 5 2273.43 557.20 18.51 0.000

DL * Dh 6 2272.54 557.60 18.88 0.000

Dh þ h dev. 5 2275.82 562.00 23.28 0.000

DS þ Dh þ S dev. þ h dev. 7 2273.74 562.10 23.44 0.000

DC max. þ C dev. 5 2276.94 564.20 25.54 0.000

DL þ Dh þ L dev. þ h dev. 7 2275.29 565.20 26.54 0.000
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presented by each stimulus. We used the 10-degree standard

observer colour-matching functions, and modelled all stimuli

under two illumination conditions (‘forest shade’ for full

canopy cover, and ‘blue sky’ to simulate large canopy gaps;

[13]) to capture the environmental treatment effects from the

original study. We otherwise followed standard calculations for

the CIELAB model and its CIELCh cylindrical transformation

[14]. All visual modelling was run using ‘pavo’ for R [15].

As noted above, each stimulus comprised four distinct

coloured elements that varied in their relative proportions;

the yellow, blue, and black paints of the models themselves,

and the brown leaf-litter of the presentation background

(figure 1a,b). We therefore estimated between-element hue, satur-

ation, and luminance contrasts as the mean of the pairwise

differences in each. We also estimated the pairwise ‘colour differ-

ence’ between each patch—which broadly captures the combined

contributions of hue, saturation and luminance contrasts—as the

distance between the centroids of each group in CIELAB/LCh

space calculated using the CIEDE2000 colour-difference formula

(a Euclidean distance adjusted for perceptual non-uniformity).

We then estimated the information offered by each of the four

focal stimuli by combining these values in a way that accounted

for the difference in their relative contribution to the overall

pattern. To estimate the hue, saturation and luminance contrast

generated by stimuli, we simply took the maximum of any

between-patch comparison in each variable, weighted by their

combined relative area.

We estimated the overall colour contrast of stimuli in two

ways, representing subtly different mechanisms by which this

information may be perceived by a human viewer [3]. We esti-

mated the maximum colour difference as above, by taking the

maximum colour difference of any pairwise comparison
weighted by the combined relative area of both elements. We

also estimated the integrated, or average, colour difference by

combining all pairwise colour-difference estimates, and weighting

each by its relative area.

(c) Statistical modelling
We used a restricted maximum likelihood (REML) based infor-

mation-theoretic approach ([16]; and electronic supplementary

material, methods) to rank a set of generalized linear mixed-

effect models (table 1) that represent alternate hypotheses for

the way in which subjective visual cues guide object-detection

in noisy environments, as informed by knowledge of primate

psychophysics [3,6,7]. In all cases we modelled the number of

stimuli detected as a Gaussian response (as supported by nor-

mally distributed data and residuals), and included participant

ID as a random covariate. Six models were constructed of all indi-

vidual and two-way linear combinations of luminance, hue, and

saturation contrasts. A further six models were built using the

same combinations, with the addition of the between-environ-

ment deviation for each factor. That is, the absolute difference

in the mean value of each factor (hue, saturation and/or lumi-

nance contrast) between participants’ starting and finishing

environments, thereby estimating any effects of the order in

which environmental treatments were completed. We included

two models comprised of the main effects and two-way inter-

action of luminance and either hue or saturation, which

represents a differential, shifting reliance on chromatic and achro-

matic cues across the two viewing environments. We built a

further four models of overall ‘colour-difference’ using estimates

of maximum and integrated colour difference individually, as

well as each with their associated between-environment

http://rsbl.royalsocietypublishing.org/
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Figure 2. Conditional plots of predictors from the most parsimonious model of stimulus detection (table 1), comprised of (a) luminance contrast and (b) saturation
contrast. Points denote partial residuals, black lines are the restricted maximum-likelihood fits of a given predictor with the other held at its median value, and
shaded areas demarcate 95% confidence bands.

Table 2. Parameter estimates and standard errors from the most
parsimonious GLME models of stimulus detections (table 1, bold), along
with their overall fit.
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deviation. Finally, we included an intercept-only model as our

null, which represented stimulus detections as a random process.

We used the R package nlme to build GLMEs, and MuMIn for

information-theoretic model selection [17].
model parameter est. s.e. cond. R2

DL þ DS intercept 1.27 0.30 0.20

DL 0.15 0.04

DS 0.69 0.36

DL intercept 1.52 0.28 0.19

DL 0.16 0.04
3. Results
The most parsimonious model of stimulus detection indi-

cated a positive contribution of both luminance and

saturation contrast (tables 1 and 2). Of all models tested, it

was approximately twice as informative as the second-best

model (in terms of minimizing the estimated relative

Kullback–Leibler distance; [16]), which included a positive

contribution of luminance contrast alone (DAICc ¼ 1.35,

w1/w2 ¼ 1.96). Both models clearly outperformed the null

((w1 þ w2)/wnull ¼ 299). The strength of the individual effects

of luminance and saturation contrast were modest (figure 2).

However, the presence of luminance contrast in both leading

models, and the minimal change in log-likelihood between

them despite the extra parameter (table 1, bold), imply a

more fundamental role in stimulus detection. Hue contrast

was uninformative, with all models containing it performing

no better than the null (table 1).
4. Discussion
Extensive laboratory-based work continues to develop our

understanding of the physiology and psychology of human

colour sensation [3,7]. Here we built upon recent empirical

data [12], in an effort to identify the basis of stimulus

detection/classification across complex, natural visual

environments. The most parsimonious models indicated a

simple additive contribution of both luminance and saturation

contrast; brighter and more ‘chromatic’ stimuli were more

likely to be found by human viewers across environments

(table 1; figure 2).

The primacy of luminance contrast as a predictor of detec-

tions is consistent with our knowledge of primate visual
ecology, and likely represents a number of concurrent

processes. For example, reflexive attentional shifts triggered

by the appearance of objects in the visual periphery are

mediated by achromatic, rather than chromatic, cues [18].

Luminance contrast also guides the rapid characterization of

panoramic scenes, and affords the location and fixation of

target objects [4,7]. This is exemplified by recent work on

new world monkeys, in which achromatic contrast alone pre-

dicted individual success in short-range fruit foraging [19].

Finally, this channel mediates the perception of edges and

shapes that underlie finer-scale object recognition; a specializ-

ation echoed in the distribution of receptors across the

human retina [7].

Under variable illumination, chromatic cues provide the

most reliable information about the material properties of

objects (a truth partly credited for the evolution of colour

vision itself; [6,20]). Given that our experimental data were

drawn from a task that demanded both the detection and

categorization of objects amidst noise [12], we would expect

a role for chromatic contrast in leading models (table 1). As

with luminance, the predictive strength of this parameter

(figure 2b) is likely to reflect several visual processes. These

include object detection, segregation and discrimination

under trying conditions (as noted above), along with

higher-level processes involving memory and spatial recall

[3]. However, given that hue is typically a more reliable cue

http://rsbl.royalsocietypublishing.org/
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than saturation—which is also susceptible to shifts in

illumination—its lack of influence here is of interest. In the

current context, this is likely a consequence of humans’ ability

to alternate the use of chromatic cues depending on whether

they are diagnostic features of the target [20]. This is further

supported by extensive psychological work demonstrating

that viewers’ selective attention may be captured by locally

salient features of stimuli, such as discrepancies in hue, satur-

ation and/or motion [18,21,22]. The inclusion of saturation

over hue contrast in our most parsimonious models, then,

may simply be a function of the greater range of between-

stimulus variation in that feature (i.e. its particular salience

as a visual cue, or ‘singleton’ [22]). This is of course a general

limitation of our experimental data in that the focal targets

imitate a limited range of natural pattern variation, rather

than the spread of colour and luminance contrasts required

for more general inference.

Accessing the perceptual world of animals remains a fun-

damental challenge, and progress will stem from a diversity

of approaches. Given the ultimate importance of behaviour

in questions of sensory ecology and evolution, underexplored

potential lies in drawing on traditional psychophysical
knowledge to inform manipulative, natural-behavioural

experiments. Our results support the promise of this

approach, and implicate relatively simple cues in guiding

human visual behaviour under naturally dynamic conditions.
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